.::Tecnología Mecánica::.

.:.La mejor web para la ingeniería electromecánica, técnico industrial y sus aplicaciones.:.

Búsqueda personalizada

 

LA MECÁNICA DE SUELOS Y LAS CIMENTACIONES EN LAS CONSTRUCCIONES INDUSTRIALES

En esta sección trataremos el suelo y el terreno como un elemento básico que participa de las construcciones en general, y que desarrollaremos especialmente aplicado a las Construcciones Industriales.
El suelo o terreno desde la selección de la implantación de la Industria hasta como soporte del Edificio industrial juega un papel determinante, bien como elemento estructural-soporte de lo que se le coloca encima, bien como material aprovechable para terraplenes y/o rellenos, bien incluso como material de construcción en diques, presas u otras obras de tierras comunes en nuestras Obras Industriales.
Luego es menester analizar el suelo, según el uso y/o empleo que del mismo hagamos en nuestra Obra.

A) Como lugar de Implantación de la Industria
El análisis de las características del suelo y/o terreno como lugar de implantación de un Complejos Industriales,y tiene como vertientes principales las topográficas, edafológicas, geológicas e hidrogeológicas.
B) Como elemento soporte de las cimentaciones
El análisis de las particularidades del suelo o terreno como elemento soporte de las diferentes tipos de cimentaciones de las Obras Industriales, es un estudio particularizado de su estructura y componentes físico-químicos y el comportamiento de estos ante las cimentaciones superficiales, profundas, con cargas estáticas o dinámicas aplicadas sobre el mismo.

C) Como elemento estructural
En toda obra de tierras y en especial en las de carácter industrial se realizan rellenos (terraplenes o pedraplenes); se hacen obras de sostenimiento o contención; se realizan excavaciones superficiales y subterráneas; se crean infraestructuras para las obras viales, propias o inducidas de la industria y en todas ellas el suelo o terreno juega un papel como elemento estructural.

D) Como producto
Es una manera de ver el suelo o terreno como material de construcción. De las Canteras de Prestamos o de las Canteras de Grava o Piedras nos abastecemos de los materiales fundamentales para nuestras Obras. Minas a cielo abiertas o subterráneas nos proporcionan de estos importantes componentes de la construcción industrial.

E) Como Acuífero
El suelo o terreno, es nuestra gran reserva de agua y en muchas ocasiones le mantenemos como grandes reservas acuíferas subterráneas o superficiales.
De todo ello se desprende que el suelo o terreno, no es sólo un elemento portante o de soporte de las construcciones sino que participa y aporta innumerables elementos aprovechables.

EL SUELO COMO ELEMENTO PORTANTE DE LAS CIMENTACIONES
Las cargas que transmite la cimentación a las capas del terreno causan tensiones y por tanto, deformaciones en la capa del terreno soporte. Como en todos los materiales, la deformación depende de la tensión y de las propiedades del terreno soporte. Estas deformaciones tienen lugar siempre y su suma produce asientos de las superficies de contacto entre la cimentación y el terreno.
La conducta del terreno bajo tensión está afectada por su densidad y por las proporciones relativas de agua y aire que llenan sus huecos. Estas propiedades varían con el tiempo y dependen en cierto modo de otros muchos factores.
* Variación del volumen de huecos como consecuencia de la compactación del terreno.
* Variación del volumen de huecos como consecuencia del dezplazamiento de las partículas.
* Variación del volumen de huecos como consecuencia de la deformación de las partículas del terreno.

Los cimientos constituyen los subsistemas de cualquier edificación que transmiten directamente las cargas de esta hacia el suelo o terreno; su función es distribuir las cargas del edificio, dispersándolas en el suelo adyacente, de modo que éste y los materiales que los sostienen tengan suficiente fuerza y rigidez para soportarlas sin sufrir deformaciones excesivas.
Debido a las interacciones de suelos y cimientos, las características de los suelo o terrenos sobre los que se construye influyen de modo determinante en la selección del tipo y tamaño de los cimientos usados; estos últimos a su vez, afectan significativamente el diseño de la superestructura, el tiempo de construcción del edificio y, en consecuencia, los costos de la obra.
Por tanto, para lograr una edificación segura y económica es fundamental disponer de cierto conocimiento de la mecánica de suelos y del diseño de cimentaciones.

El estudio de los suelos, sus propiedades, y comportamiento, desde el punto de vista de la ingeniería civil, es el campo de la Mecánica de Suelos. En el presente capítulo se estudia la aplicación de la mecánica de suelo al diseño y la construcción de cimentaciones para edificaciones industriales.

Propiedades Físicas de los suelos o terrenos
Los geólogos definen los suelos o terrenos como rocas alteradas, mientras que los ingenieros prefieren definirlos como el material que sostiene o carga el edificio por su base.
Los materiales que están presentes en los suelos naturales se clasifican en cuatro tipos:
- arenas y grava
- limos
- arcillas
- materia orgánica
Las arenas y grava son materiales granulares no plásticos.
Las arcillas, se componen de partículas mucho más pequeñas, exhiben propiedades de plasticidad y son muy cohesivas.
Los limos son materiales intermedios en el tamaño de sus partículas y se comportan, de modo típico, como materiales granulares, aunque pueden ser algo plásticos.
La materia orgánica consta principalmente de desechos vegetales.
El origen de las capas de suelo o terreno (edafológicas) y la forma como se depositan, arroja mucha luz sobre su naturaleza y variabilidad en el campo.
Los suelos son de dos orígenes: residual y sedimentario.
Los suelos residuales se forman in situ por la intemperización química de las rocas y, puesto que jamás han sido perturbados físicamente, conservan las características geológicasmenores del material rocoso de origen. (En el campo, la transición de roca a suelo suele ser gradual.)

Los suelos sedimentarios son transportados y depositados por la acción de ríos, mares, glaciares y vientos. En general, el mecanismo de sedimentación regula la granulometría (tamaño de las partículas), sus variaciones, y la estratigrafía y uniformidad de las capas edafológicas.
Para la completa identificación de un suelo o terreno el ingeniero necesita saber lo siguiente:
- tamaño
- granulometría
- forma
- orientación
- composición química de las partículas
- las fracciones coloidales y sedimentables que contiene.
No obstante, las propiedades físicas del suelo pueden hacerse variar considerablemente mediante la incorporación de pequeñas cantidades de sustancias químicas la aplicación de métodos electroquímicos.

Cuando las propiedades superficiales de las partículas son importantes, las formas de éstas adquieren por lo menos la misma importancia que la granulometría. En condiciones normales, una característica significativa es la ubicación relativa de las partículas dentro del suelo, lo que determina la resistencia a los desplazamientos internos y constituye, por lo menos, una medida cualitativa de las fuerzas de resistencia a las fuerzas cortantes y a la compresión.
Se han realizado muchos intentos de clasificación de los suelo o terrenos con base en propiedades comunes e identificables. Sin embargo, conforme se ha ido acumulando información acerca de las propiedades de los suelos, los sistemas de clasificación se han tornado cada vez más elaborados y complejos.
Una de las principales dificultades consiste en que se quieren utilizar las mismas clasificaciones para distintos usos; por ejemplo, un sistema utilizable para el diseño de carreteras ya no es tan útil cuando el problema se relaciona básicamente con el diseño de cimentaciones para edificios industriales.

Estados de la materia que afectan el comportamiento de los suelos
Un suelo o terreno cualquiera puede exhibir propiedades sólidas, viscosas, plásticas o líquidas; por tanto, cuando es posible predecir su verdadero estado físico, el diseño estructural de las cimentaciones se realiza tomando en cuenta esa información.
En contraste, los sólidos son materiales que tienen densidad, elasticidad y resistencia interna constantes, que se ven poco afectados por cambios normales de temperatura, variaciones en la humedad o vibraciones de intensidad inferior a los valores sísmicos.
La deformación por fuerzas cortantes ocurre a lo largo de dos conjuntos de planos paralelos, cuyo ángulo es constante para cada material e independiente de la naturaleza o intensidad de las fuerzas externas que inducen a la deformación.

Estas propiedades básicas de los sólidos sirven para el diseño de cimentaciones sólo mientras los suelos siguen siendo sólidos. Pero si los cambios en las condiciones modifican las estructuras del suelo, de modo que éstas ya no se comportan como sólidos, dichas propiedades se anulan y otro conjunto de reglas vienen a gobernar el nuevo estado físico.
Casi todos los suelos se comportan como sólidos, aunque sólo dentro de un cierto límite de carga, el cual depende de muchos factores externos, como flujo de humedad, temperatura, vibraciones, edad del suelo y, en algunos casos, velocidad de carga.

No existe subdivisión evidente entre los estados líquidos, plásticos y viscoso. Estos tres estados de la materia tienen la propiedad común de que es muy difícil cambiar su volumen, aunque su forma cambia continuamente. Su diferencia estriba en la cantidad de fuerzas necesarias para comenzar su movimiento.
En el caso de los estados plástico y viscoso existe un valor mínimo necesario, pero en el caso de los líquidos, fuerzas prácticamente insignificantes ocasionan el movimiento.
Cuando la fuerza deja de ser aplicada, los materiales plásticos dejan de moverse, pero los de tipo viscoso y líquidos siguen moviéndose indefinidamente hasta que entran en juego fuerzas contrarrestantes.
En general, la división entre los estados sólido y plástico depende del porcentaje de humedad del suelo.
Dicho porcentaje, sin embargo, no es una constante, sino que disminuye al aumentar la presión a que está sometido el material. Por tanto, en los suelos anegados, la posibilidad de evitar desplazamientos o pérdidas de agua se traduce en la eliminación de problemas por cambio de volumen o por asentamiento.

Humedad del suelo
El agua suele estar presente en los suelos o terrenos en forma de una delgada capa absorbida a la superficie de las partículas o como líquido libre entre éstas.
Si el contenido de agua de un suelo está principalmente en forma de capa, o humedad absorbida, entonces no se comporta como líquido. Todos los sólidos tienden a absorber o condensar en su superficie cualquier líquido (y gas) que entra en contacto con ellos.

El tipo de ión, o de elemento metálico, presente en la composición química de un sólido, influye considerablemente en la cantidad de agua que éste pueda absorber. Por tanto, los procedimientos de intercambio iónico para la estabilización de los suelos y el control de la percolación forman parte importante de la mecánica de suelo.
Las capas delgadas de agua son más fuertes que el agua de poros. En 1920, Terzaghi estableció que las películas de agua de menos de 5.04 x 10-5 mm de espesor se comportan como semi-sólidos; no hierven ni se congelan a temperaturas normales.

En consecuencia con lo anterior, los suelos o terrenos saturados se congelan con más facilidad que los suelos anegados, y los cristales de hielo crecen al tomar humedad libre de los poros. Luego un deshielo repentino libera grandes cantidades de agua, lo que suele tener drásticos resultados. Cuando los líquidos se evaporan, lo primero que hacen es formar capas, por lo que se requiere un considerable aumento térmico para efectuar el cambio de estado entre la película líquida y el vapor. Por consiguiente, el efecto de temperatura sobre el estado físico del suelo se explica en términos de la reducción del espesor de las capas de líquido al elevarse dicha temperatura.

La presencia de humedad en el suelo o terreno es fundamental para controlar la compactación. La mejor manera de efectuar la compactación de suelos, sea por medios artificiales o naturales, es bajo condiciones de humedad bastante definidas, ya que la redistribución de las partículas del suelo para que ocupen un menor volumen no es posible cuando se carece de suficiente humedad para cubrir cada gránulo. La película de agua hace las veces de lubricante, lo que facilita los movimientos relativos de las partículas, y su tensión capilar las sostiene en su sitio. Desde luego, si los granos son de menor diámetro se necesita más agua a fin de lograr mejor estabilización que en el caso de partículas más gruesas.

Resistencia de los suelos a la presión
Ya desde antes de 1640, Galileo señaló la diferencia entre sólidos, semi-líquidos y líquidos.
Este naturalista aseveraba que los semi-líquidos, a diferencia de los líquidos mantienen su forma cuando se les apila, y que, si se les hace un hueco o cavidad en la superficie , la agitación hace que se rellene el hueco, mientras que en los sólidos, la cavidad no se rellena. Esta es una descripción muy burda de la propiedad llamada pendiente natural de los materiales granulares, una propiedad muy fácil de observar en arenas limpias y secas, aunque los suelo o terrenos con diversas cantidades de arcilla y humedad tienen diferentes
pendientes. Es importante no confundir el ángulo de reposo natural con el ángulo de fricción interna, aunque muchos autores han seguido a Woltmann, quien, al traducir los escritos de Coulomb, cometió ese error.
Fue Coulomb (1773) quien aplicó a los suelos las leyes fundamentales de la fricción.
Él descubrió que la resistencia a lo largo de una superficie de falla dentro de un suelo es función tanto de la carga por unidad de área como de la superficie de contacto. Puede considerarse como la primera contribución importante a la Mecánica de Suelos.
La resistencia de los suelos a la deformación depende, sobre todo, de su resistencia a la fuerza cortante. Esta resistencia equivale, a su vez, a la suma de dos componentes:
Fricción y cohesión
La resistencia friccional surge de la irregularidad de los contactos entre partículas y es proporcional a la fuerza perpendicular entre ellas. La cohesión que es la resistencia máxima a la tensión de un suelo, es resultado de las fuerzas de atracción que hay entre gránulos en contacto íntimo y no depende de la presión normal. Sin embargo es muy raro encontrar esta cohesión verdadera; lo más común es que los suelos tengan cierta resistencia friccional.